804 research outputs found

    System control of an autonomous planetary mobile spacecraft

    Get PDF
    The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced

    PLAN-IT: Scheduling assistant for solar system exploration

    Get PDF
    A frame-based expert scheduling system shell, PLAN-IT, is developed for spacecraft scheduling in the Request Integration Phase, using the Comet Rendezvous Asteroid Flyby (CRAF) mission as a development base. Basic, structured, and expert scheduling techniques are reviewed. Data elements such as activity representation and resource conflict representation are discussed. Resource constraints include minimum and maximum separation times between activities, percentage of time pointed at specific targets, and separation time between targeted intervals of a given activity. The different scheduling technique categories and the rationale for their selection are also considered

    Operations concepts for Mars missions with multiple mobile spacecraft

    Get PDF
    Missions are being proposed which involve landing a varying number (anywhere from one to 24) of small mobile spacecraft on Mars. Mission proposals include sample returns, in situ geochemistry and geology, and instrument deployment functions. This paper discusses changes needed in traditional space operations methods for support of rover operations. Relevant differences include more frequent commanding, higher risk acceptance, streamlined procedures, and reliance on additional spacecraft autonomy, advanced fault protection, and prenegotiated decisions. New methods are especially important for missions with several Mars rovers operating concurrently against time limits. This paper also discusses likely mission design limits imposed by operations constraints

    Mars Pathfinder mission operations concepts

    Get PDF
    The Mars Pathfinder Project plans a December 1996 launch of a single spacecraft. After jettisoning a cruise stage, an entry body containing a lander and microrover will directly enter the Mars atmosphere and parachute to a hard landing near the sub-solar latitude of 15 degrees North in July 1997. Primary surface operations last for 30 days. Cost estimates for Pathfinder ground systems development and operations are not only lower in absolute dollars, but also are a lower percentage of total project costs than in past planetary missions. Operations teams will be smaller and fewer than typical flight projects. Operations scenarios have been developed early in the project and are being used to guide operations implementation and flight system design. Recovery of key engineering data from entry, descent, and landing is a top mission priority. These data will be recorded for playback after landing. Real-time tracking of a modified carrier signal through this phase can provide important insight into the spacecraft performance during entry, descent, and landing in the event recorded data is never recovered. Surface scenarios are dominated by microrover activity and lander imaging during 7 hours of the Mars day from 0700 to 1400 local solar time. Efficient uplink and downlink processes have been designed to command the lander and microrover each Mars day

    The diet of a nocturnal pelagic predator, the Bulwer's petrel, across the lunar cycle

    Get PDF
    Existe informação suplementar disponível na versão online.The lunar cycle is believed to strongly influence the vertical distribution of many oceanic taxa, with implications for the foraging behaviour of nocturnal marine predators. Most studies to date testing lunar effects on foraging have focused on predator activity at-sea, with some birds and marine mammals demonstrating contrasting behavioural patterns, depending on the lunar-phase. However, to date no study has focused on how the lunar cycle might actually affect predator-prey interactions in the upper layers of the ocean. Here, we tested whether the diet of the predominantly nocturnal pelagic predator, the Bulwer's petrel (Bulweria bulwerii) would change throughout the lunar cycle, using molecular analysis to augment detection and taxonomic resolution of prey collected from stomach-contents. We found no evidence of dietary shifts in species composition or diversity, with Bulwer's petrel always consuming a wide range of mesopelagic species. Other co-variables potentially affecting light availability at-sea, such as percentage of cloud cover, did not confound our results. Moreover, many of the species found are thought not to reach the sea-surface. Our findings reveal that nocturnal predators are probably more specialized than previously assumed, irrespective of ambient-light, but also reveal deficiencies in our current understanding of species vertical distribution and predation-dynamics at-sea.Fundação para a Ciência e a Tecnologia (FCT); FEDERinfo:eu-repo/semantics/publishedVersio

    Effect of the fabrication parameters on the performance of embroidered antennas

    Get PDF
    Simulated and measured microstrip patch antennas produced using embroidery techniques have been presented. The antennas use a standard microwave substrate material. The effect of stitch direction and stitch density is described and a clear requirement to understand how the currents flow in an antenna so that the stitch direction can be correctly chosen is shown. Two different simulation approaches for these antennas are discussed and one is linked to measurement results, pointing to a simplified model for simulating embroidered patch antennas

    High performance flexible fabric electronics for megahertz frequency communications

    Get PDF
    This paper investigates the concept of using conductive threads for fabricating electronics including antennas at microwave frequencies. A number of commercial conductive threads have been considered. Digital embroidery has been used to create samples with different stitch types. This paper will provide a wide range of practical advice about fabricating samples using such materials. The threads have been examined by assessing their DC resistances at rest and while under physical strain and also the RF performance of transmission lines. The results show there is a wide range in performance between different conductive threads
    • …
    corecore